PubMed ID: 10772654
Author(s): Podrez EA, Febbraio M, Sheibani N, Schmitt D, Silverstein RL, Hajjar DP, Cohen PA, Frazier WA, Hoff HF, Hazen SL. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000 Apr;105(8):1095-108. Erratum in: J Clin Invest 2000 May;105(10):1483. PMID 10772654
Journal: The Journal Of Clinical Investigation, Volume 105, Issue 8, Apr 2000
The oxidative conversion of LDL into an atherogenic form is considered a pivotal event in the development of cardiovascular disease. Recent studies have identified reactive nitrogen species generated by monocytes by way of the myeloperoxidase-hydrogen peroxide-nitrite (MPO-H(2)O(2)-NO(2)(-)) system as a novel mechanism for converting LDL into a high-uptake form (NO(2)-LDL) for macrophages. We now identify the scavenger receptor CD36 as the major receptor responsible for high-affinity and saturable cellular recognition of NO(2)-LDL by murine and human macrophages. Using cells stably transfected with CD36, CD36-specific blocking mAbs, and CD36-null macrophages, we demonstrated CD36-dependent binding, cholesterol loading, and macrophage foam cell formation after exposure to NO(2)-LDL. Modification of LDL by the MPO-H(2)O(2)-NO(2)(-) system in the presence of up to 80% lipoprotein-deficient serum (LPDS) still resulted in the conversion of the lipoprotein into a high-uptake form for macrophages, whereas addition of less than 5% LPDS totally blocked Cu(2+)-catalyzed LDL oxidation and conversion into a ligand for CD36. Competition studies demonstrated that lipid oxidation products derived from 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine can serve as essential moieties on NO(2)-LDL recognized by CD36. Collectively, these results suggest that MPO-dependent conversion of LDL into a ligand for CD36 is a likely pathway for generating foam cells in vivo. MPO secreted from activated phagocytes may also tag phospholipid-containing targets for removal by CD36-positive cells.